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Self-Supervised image representation encoding
methods do not generalize to novel exploration
and other Reinforcement Learning tasks.
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PROJECT SUMMARY

In this project, we explore the use of transfer learning for training Reinforcement Learning
agents on raw pixel-based visual inputs. Existing scripting-based methods for gameplay
automation has been very successful in automating linear, story driven games but fail at
ensuring coverage of large open-world titles. Previous works have found that
Reinforcement Learning methods significantly outperform random exploration but is difficult
to train and suffers from catastrophic forgetting. We hypothesize that the image encoder is
the most difficult component to train in a Reinforcement Learning scheme and it would
benefit significantly from a pre-trained image encoder.

We focus on transferring image encoders trained to build meaningful embeddings of the
complex 3D environment in modern AAA games through various self-supervised tasks such
as Time Contrastive Networks (TCN) [1], Temporal Distance Classification (TDC) [2],
Simple Siamese (SimSiam) [3], and a modified version of the Middle Out [4] methods. We
evaluate the performance of our models on multi-task reinforcement learning and on a
specific exploration task.

We found that all four pre-training methods resulted in significant performance degradation
on both the multi-task and the exploration task. In the multi-task case, when the image
encoder is frozen, the Middle Out method and the TDC methods showed similar
performance to the randomly initialized image encoder. When the encoder is allowed to
change, all four methods significantly underperformed compared to the randomly initialized.
We conclude that the features learned by such pre-training methods are not applicable to

the tasks, possibly due the absence of samples of the target task in the training dataset.
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