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PROJECT SUMMARY

In today's highly competitive business landscape, integrating Large Language Models
(LLMs) into products is crucial. While open-source LLM APls likke ChatGPT are
accessible, they can be costly. For businesses prioritizing data privacy, proprietary data,
and its use-cases, developing an in-house Large Language Model Operations (LLMOps)
solution becomes necessary.

Our methodology outlines an approach to cost-effective LLM training using Google Cloud
Plattorm and the Vertex Al service. We employ Distributed Data Parallel (DDP)
techniques, including standard DDP for smaller models and Zero Redundancy Optimizer
(ZeRO) for larger ones. ZeRO optimally shards model optimizer states, gradients, and
parameters across multiple devices, improving memory efficiency. Moreover, it can also
offload the model states and computation from the GPU to the host CPU, resulting in
memory-efficient training. Additionally, we explore the LoRA technique for quantizing and
fine-tuning larger LLMs on a single GPU.

Notably, we successfully trained a ~3 billion-parameter model (GPT-2 architecture) using
8 Nvidia Tesla V100 GPUs (16GB) and a general-purpose n1-standard-64 machine type.
Establishing an in-house distributed system with tools like DeepSpeed, Accelerate, or
Megatron-LM has the potential to transform LLM training and fine-tuning. This
transformation could provide businesses with a competitive advantage, enabling them to
harness the full potential of LLMs while optimizing resources and staying agile in a rapidly
evolving market.
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