ARIA

APPLIED RESEARCH IN ACTION

Cracking the Code: Gherkin
Test Prioritization for
Improved CIl/CD Efficiency

Expediting regression and acceptance testing for
incoming code changes by using software metrics and
NLP methods to pinpoint an optimal Gherkin test subset.

Jaspreet Singh Dhani and Simrat Bains

Shurui Zhou Hossein Taghinejad
ACADEMIC SUPERVISOR INDUSTRY SUPERVISOR

Comparison of Candidate Set on Sample Builds

BDD TEST SUITE BDD TEST SUITE

13023 OF 23449

Candidate Set Size

Average Runtime of Candidate Sets

BEFORE TEST SET Method 1: Test Specificity based Prioritization Method 2: Latent Semantic Indexing and Clustering AFTER TEST SET

PRIORITISATION PRIORITIZATION Test Specificity [Similar Pair Elimination [l Test Specificity + Historical Trends

B Similar Pair Elimination + Historical Trends

41.46

Candidate Sets

PROJECT SUMMARY

SOTI MobiControl, an Enterprise Mobility Management solution, grants control over
vital mobile devices, enabling app deployment, device enrollment, security risk
Identification, data protection, and downtime reduction. Over the past thirty years, the
MobiControl teams have developed thousands of Behavior Driven Development
(BDD) tests in Gherkin. However, running the complete suite for every check-in
consumes significant amount of time and computational resources. While manual test
selection can help, it is not a scalable solution for each Continuous Integration (Cl) and
Continuous Delivery (CD) build. The proposed solution is structured in a two-step
manner. First, using coverage data, a candidate set is identified by retaining Gherkin
tests with code execution flows most specific to the affected methods, reducing the
average candidate set size to 25% of the currently deployed solution. The second
methodology employs clustering and Latent Semantic Indexing to identify test
candidates based on intersection of key themes from Gherkin tests and the incoming

code check-ins. By merging results from these methodologies and accounting for test
execution history, a candidate set is prepared that ensures comprehensive scenario
coverage specific to the code changes that, as a beneficial side effect, reduces the
overall average test suite execution time to 10% of the current solution. During the
development of this pipeline, two additional by-products emerge: a data collection
pipeline Is established to gather historical trends at scheduled intervals, and an
association between Gherkin tests and their corresponding C# step definitions is
established to enhance the knowledge base for information extraction.

SOTI

Master of Science In

omputer Science

NIVERSITY oF TorRoNTO | Applied Computing

