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PROJECT SUMMARY

This report provides an overview of an advancement that have been made to improve
the performance of a forecasting engine. The engine is a Machine Learning model that
utilizes Gradient Boosting Decision Tree (GBDT) to forecast company fundamentals
for investment strategies. The primary objective of the advancement is to enhance the

forecasting accuracy of the engine while maintaining consistent forecasts over time.
However, the current model faces a challenge: a dataset with a high feature space and
relatively a small number of data instances, which leads to the curse of dimensionality.
To address this challenge, a systematic target-specific feature screening process has
been proposed to reduce the number of features used in the model effectively. The
feature screening process provides a viable solution to mitigate the impact of high
feature dimensions while still retaining informative features to produce forecasts with
better out-of-sample ranking accuracy and volatility. This report applies two updates in
the feature screening process to enable target independent feature screening and
Macro feature screening. And a detailed experiment is conducted to assess the
efficacy of the feature screening process with various parameters. Empirical data
shows strong evidence that the recommended model achieves superior ranking
accuracy and volatility consistently at both cross-section and security level. Thus, the
proposed advancement is a significant step to boost the forecasting performance of
the engine, making it a more valuable to produce high quality signals for downstream
Investment tasks.
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