ARIA

APPLIED RESEARCH IN ACTION

|IOMemTable — Memory-Optimized
Index-Organized Table for
LSM-Tree Storage

Toward a better trade-off of index performance
for Hybrid Transactional / Analytical
Processing (HTAP) workloads

Deyu Liu and Duy Tran

Qizhen Zhang and Niv Dayan Kelvin Ho
ACADEMIC SUPERVISORS INDUSTRY SUPERVISOR

Normalized keys (4 bytes after prefix)

(a) Tradition?l B-Iinl; Tr;e (b) Our work: IOMemTable v T - T
composite) clustered index) . .
(P) Header temid 1 : ‘'key3' ltemid2 : ‘'key4'
Request Request
A
Key: 'keylkey2key3' Key: 'keylkey2key4' Special Prefix: 'keylkey?2'
ecia
Value: ... Value: ... P Hints: ['key3', 'key5', 'key7', ...]

B-link Tree IOMemTable

A FIF

Flushed

ke Figure 2a: "Poor man's normalized keys" for intra-node search
when Tu

Traditional Optimistic
y y Y v \ ‘éSTable v 1. lock node A 1. record version 3
a: 11 b: 71 c: 51 d: 41 WAJ WAL 2. access node A » 2. access node A
(a: 1]b: 7]c: 5]d: 4] 3. unlock node A 3. validate version 3
Figure 1: Overview of IOMemTable design as compared to a traditional index. - if failed, retry with traditional lock
Unlike a traditional B-Tree composite clustered index, IOMemTable keeps all indexed and non-indexed :
attributes at the leaf nodes of the B-Link tree, enabling faster inserts, efficient point and range query of hot 4. lock node B 4. record version 7
data, and future extension to an log-structured merge tree design (on-disk components not yet realized). 5. ... 5..
Figure 2b: Comparison of a down-link traversal in a B-Link tree
using traditional latching vs. optimistic latching

Our project implements IOMemTable, a memory-optimized Index-Organized Table (I0OT) [1] In
Huawei openGauss database management system. IOT is a disk-based ACID-compliant
storage option, essentially a clustered composite B-Link Tree index storing all attribute data in
leaf nodes. We explore IOMemTable’s potential to be the “level 0" data structure for a
log-structured merge-trees [2] storage engine. Building on |IOT allows us to maintain strong
transactional guarantees, achieve decent write throughput and fast read performance of hot
data required for HTAP workloads, and explore trade-offs different from existing LSM tree
Implementations.

We first implemented (1) a dedicated memory arena for full control of buffer pool policy, and (2)
pointer swizzling [3] to eliminate buffer-to-block mapping overhead, among other required
changes for transactional semantics. These changes only yielded an 8% improvement in
TPC-C results compared to highly-optimized IOT baselines, and two primary bottlenecks
emerged: slow intra-node search and node locking overhead.

Inspired by in-memory order-preserving data structures like Masstree [4], we focus on two
optimizations: (1) speeding up intra-node search by storing normalized keys in a cache-friendly
manner, while using a hint array to narrow down search range [9], and (2) Improving
concurrency with optimistic latching [6]. Micro-benchmarking shows a 1.25x throughput
Improvement from intra-node search optimizations in a single-threaded point query workload,
and optimistic latching achieves a 2.29x improvement for a 20-threaded point query workload.
Currently at about 50% of Masstree’s performance, we continue to optimize IOMemTable,
aiming to be competitive with its performance on insert, point, and range queries.

REFERENCES

[1] Jagannathan Srinivasan, Souripriya Das, Chuck Freiwald, Eugene Inseok Chong, Mahesh Jagannath, Aravind Yalamanchi, Ramkumar Krishnan,
Anh-Tuan Tran, Samuel DeFazio, and Jayanta Banerjee. 2000. Oracle8i Index-Organized Table and Its Application to New Domains. In VLDB 2000,
Proceedings of 26th International Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, Morgan Kaufmann, 285-296.

[2] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4
(1996), 351-385.

[3] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph Tucek, Mark Lillibridge, and Alistair C. Veitch. 2014. In-Memory Performance for
Big Data. Proc. VLDB Endow. 8, 1 (2014), 37—48.

[4] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness for fast multicore key-value storage. In European Conference on
Computer Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys 12, Bern, Switzerland, April 10-13, 2012, ACM, 183-196.

[5] Goetz Graefe. 2011. Modern B-Tree Techniques. Found. Trends Databases 3, 4 (2011), 203—402.

[6] Jan Béttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper. 2020. Scalable and robust latches for database systems. In 16th
International Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Oregon, USA, June 15, 2020, ACM, 2:1-2:8.

N

HUAWEI

Master of Science In

omputer Science

NIVERSITY oF TorRoNTO | Applied Computing

