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Our project implements IOMemTable, a memory-optimized Index-Organized Table (I0OT) [1] In
Huawei openGauss database management system. IOT is a disk-based ACID-compliant
storage option, essentially a clustered composite B-Link Tree index storing all attribute data in
leaf nodes. We explore IOMemTable’s potential to be the “level 0" data structure for a
log-structured merge-trees [2] storage engine. Building on |IOT allows us to maintain strong
transactional guarantees, achieve decent write throughput and fast read performance of hot
data required for HTAP workloads, and explore trade-offs different from existing LSM tree
Implementations.

We first implemented (1) a dedicated memory arena for full control of buffer pool policy, and (2)
pointer swizzling [3] to eliminate buffer-to-block mapping overhead, among other required
changes for transactional semantics. These changes only yielded an 8% improvement in
TPC-C results compared to highly-optimized IOT baselines, and two primary bottlenecks
emerged: slow intra-node search and node locking overhead.

Inspired by in-memory order-preserving data structures like Masstree [4], we focus on two
optimizations: (1) speeding up intra-node search by storing normalized keys in a cache-friendly
manner, while using a hint array to narrow down search range [9], and (2) Improving
concurrency with optimistic latching [6]. Micro-benchmarking shows a 1.25x throughput
Improvement from intra-node search optimizations in a single-threaded point query workload,
and optimistic latching achieves a 2.29x improvement for a 20-threaded point query workload.
Currently at about 50% of Masstree’s performance, we continue to optimize IOMemTable,
aiming to be competitive with its performance on insert, point, and range queries.
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