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Attention-based graph coarsening allows for significant reduction
of the size of graphs, while retaining sufficient information for
graph reconstruction, as well as downstream classification tasks
versus traditional algorithmic coarsening methods.
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PROJECT SUMMARY

Files of code, and collections of files (codebases), can be easily converted to an abstract
syntax tree (AST) representation that contains sufficient semantic/structural information
to run a program. These tree structures lend themselves naturally to be used in graph
neural networks (GNNSs) for static analysis of code files and codebases. However, both
ASTs and GNNs are memory intensive, in that the former can be quite large and the
latter do not scale well with large inputs. To solve this compatibility issue between the
two, previous approaches have used heuristics to coarsen ASTs, thereby reducing their
size before passing them to GNNs. These approaches suffer in their inability to rely on
data to learn how to best coarsen a graph to retain information. In this work, we propose
ASTA Encoder (AST Attention Encoder), a data-driven approach to learn how to
condense ASTs, with the goal of passing them to a downstream GNN task. This
approach introduces novelty to the graph auto-encoder architecture by calculating a
learnable node importance score that incorporates edge directionality, which allows the
network to understand the effect of dropping nodes with certain parent/child
relationships. We train an attention-based GNN auto-encoder network on thousands of
ASTs coming from a custom augmented AST parser used on public Python GitHub
repositories. \We show that graphs can be reduced in size by 92.5% while still increasing
performance on downstream graph classification tasks.
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