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PROJECT SUMMARY

Programmers have encountered significant challenges in effectively harnessing the
capabilities of parallel architectures due to the inherent complexity of reasoning about

parallel programs. Open Multi-Processing (OpenMP provides a way to unify code for
serial and parallel application with its collection of compiler directives that mark

sections of the code for parallel execution. However, parallelizing code using optimal
OpenMP directives still requires developer expertise. Thus, with the advent of large
Language Models capable of reasoning about code there has been much research
into their ability to aid programmers in both identifying parallelizable code and then
parallelizing it. However, the predictions of these models are sensitive to the
non-semantic details of the input code, such as whitespace or variable naming
convention.

In this study, we aim to investigate the impact of these code aesthetics on model
performance. Specifically, we investigate finetuning and testing models on
pre-formatted code according to the CLANG formatter. Additionally, we examine the
effect of variable naming by finetuning a model on code with obfuscated variable
names. We conduct these experiments on an Open-Source Large Language Model
for Code, known as StarCoder and examine performance across two scenarios:
identifying whether a given loop is parallelizable, and given a parallelizable loop
iIdentifying the correct type of OpenMP directive. In showing this we enhance the
understanding of Large Language Models for parallelization’s robustness to
non-semantic changes in their inputs.
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