ARIA

APPLIED RESEARCH IN ACTION

Automatically Parallelizing
C/C++ code with Large
Language Models

Using Large Language Model to
automatically classify and specify OpenMP
directives for the Sequential C/C++ code.

Amandeep Singh

Angela Demke Brown Charles Boyd
ACADEMIC SUPERVISOR INDUSTRY SUPERVISOR

Prediction probabilities 0 ! A

% * : i<10000 Text with highlichted words
relu(X, . 0 — she
1 (.3 e for (-0; 0000 {)1
’ 3 ES i & i il[i] * ih:
assert(x & len>0 && res); o1 }XI[I] <1 1] —>_10D:
Directive -;j“-"]
#pragma omp parallel for oo
FOR(idx=0; idx<len;++idx) L
[(_]0_0
’ = " i++)
resiidx] =i X[aebe] >0 2 elid] = - o.ﬂsﬁ .
_ 0.03_
: x1[i] 4 4
return [REISE 0.02
for
0.02
y_10G1:;
0.01
1=0;
0.00

PROJECT SUMMARY

Programmers have encountered significant challenges in effectively harnessing the
capabilities of parallel architectures due to the inherent complexity of reasoning about

parallel programs. Open Multi-Processing (OpenMP provides a way to unify code for
serial and parallel application with its collection of compiler directives that mark

sections of the code for parallel execution. However, parallelizing code using optimal
OpenMP directives still requires developer expertise. Thus, with the advent of large
Language Models capable of reasoning about code there has been much research
into their ability to aid programmers in both identifying parallelizable code and then
parallelizing it. However, the predictions of these models are sensitive to the
non-semantic details of the input code, such as whitespace or variable naming
convention.

In this study, we aim to investigate the impact of these code aesthetics on model
performance. Specifically, we investigate finetuning and testing models on
pre-formatted code according to the CLANG formatter. Additionally, we examine the
effect of variable naming by finetuning a model on code with obfuscated variable
names. We conduct these experiments on an Open-Source Large Language Model
for Code, known as StarCoder and examine performance across two scenarios:
identifying whether a given loop is parallelizable, and given a parallelizable loop
iIdentifying the correct type of OpenMP directive. In showing this we enhance the
understanding of Large Language Models for parallelization’s robustness to
non-semantic changes in their inputs.

REFERENCES

1.A.a.B. J. a. C. J. Meade, "Challenges of evolving sequential to parallel code: An exploratory review," in IWPSE-EVOL'11 - Proceedings
of the 12th International Workshop on Principles on Software Evolution, 2011.

2. P.P.P.S. H. A. Reed Milewicz, Negative Perceptions About the Applicability of Source-to-Source Compilers in HPC: A Literature Review,
Springer International Publishing, 2021.

3. M. Hill, " A Primer on the meltdown & spectre hardware security design flaws and their important implications.," Computer Architecture
Today, 2018.

4. A.a.A. A. Imam, "The Use of Natural Language Processing Approach for Converting Pseudo Code to C# Code," Journal of Intelligent
Systems, p. 1388-1407, 2019.

5.R. H.a. Y. P a. G. Oren, "Learning to Parallelize in a Shared-Memory Environment with Transformers," 2022.

6.D. G.a.S. R. a. S. Lu, "GraphCodeBERT: Pre-training Code Representations with Data Flow," in ICLR, 2021.

7.R.L.a.L.B.A a.Y. Z, "StarCoder: may the source be with you!," 2023.

AMD 1

Master of Science In

omputer Science

NIVERSITY oF TorRoNTO | Applied Computing

