~RIA

APPLIED RESEARCH IN ACTION

JITServer: Disaggregated JIT
Compiler for the JVM

Improving JVM performance and reducing
CPU and memory costs in the cloud using
remote JIT compilation and caching
compiled code and profiling data.

Alexey Khrabrov

Eyal de Lara
ACADEMIC SUPERVISOR

Performance Evaluation Results

m

1.5 - B Local JIT (0]
. Remote JIT ) 30
B Remote |IT + cache %
1.0 5 20
£
(]
0.5 — £ 10 -
5
[s]
0.0 - F o -

5 min 10 min
AcmeAir: Application lifespan A cmeAir Appl t n lifespan

JITServer Architecture

o

g

o

- g

: : compilation request £

JVM : Client JVM = JITServer o
JIT compller : piler runtime info requests/responses S
. _ ; -

: native code JIT compiler ]

JVM disaggregation Client JVM [

ey

) : N\ /. Profiling

JVM Client JVM _ prefetched cached native code

Compiled

v
E‘ —
JIT compiler conmg code cache E 7 100 o
; 8 10 7
| ’ h h :5 L
_ . .l_ ; h_

Warm-up time, sec

AmA IdCt AmA cold: Con

PROJECT SUMMARY

The Java virtual machine (JVM) powers many popular programming languages (e.g.,
Java, Scala, Kotlin) commonly used in modern cloud computing workloads such as big
data analytics, stream processing, and web applications. Managed runtimes such as the
JVM use just-in-time (JIT) compilation to improve application performance by converting
platform-independent bytecodes into optimized native code dynamically at runtime.
Unfortunately, JIT compilation incurs significant CPU (up to 50%) and memory (up tp 100s
of MBs) overheads, especially for modern cloud workloads where JVM instances are

often short-lived and/or memory-constrained, e.g. FaaS and microservices.

We reduce these overheads by decoupling JIT compilation from the rest of the JVM and
offloading it to a separate remote process. This disaggregation reduces the overall
memory usage and allows provisioning and scaling compilation resources independently
from resources used to run application code. Furthermore, we use the compiler server as

a natural point of sharing and reuse of compiler effort across application instances. By
caching compiled native code and reusing it in multiple client JVMs, we reduce
system-wide resource usage, increase application density, and speed up application start
and warm-up. We also reuse profiling data across client JVMs to compile methods earlier,

reducing the overhead of slow interpretation.

JITServer is a disaggregated caching JIT compiler that we implemented in the Eclipse

Opend9 JVM. JITServer is transparent to the application developer and supports all the
dynamic features in the JVM specification. In our experiments, JITServer reduced overall
CPU cost by up to 77%, overall memory usage by up to 62%, application start time by up
to 58% and warm-up time by up to 87%.

SYSTEMS AND NETWORKS LAB

Computer Science

% UNIVERSITY OF TORONTO




